-
Implantable device for wirelessly controlled drug delivery
Summary Researchers from Stanford University have developed an implantable, ultrasound-powered drug delivery device that integrates nanoparticles and electronics for targeted, on-demand drug release. The device uses a potentiostat to control drug release by measuring the current between electrodes, and it operates wirelessly through ultrasound, making it ideal for deep tissue implantation. The system allows precise […]
-
eWEAR: Implantable device for wirelessly controlled drug delivery
-
Stanford scientists uncover how brain regions keep each other on track
Summary Before smartphones, memorizing phone numbers was a common necessity, often accomplished by mentally repeating the number. The brain similarly solves short-term memory problems by maintaining patterns of neuronal activity. Researchers, led by Professors Shaul Druckmann and Nuo Li, studied how this occurs in mice by engaging their short-term memory. They discovered that two brain […]
-
eWEAR: Stanford scientists uncover how brain regions keep each other on track
-
A Window into Maternal Health Through Hair Cortisol
Summary Hair cortisol concentration (HCC) offers a promising non-invasive method to track stress hormone levels over time, particularly during pregnancy. Cortisol, crucial in the body’s stress response, is deposited into hair, reflecting past hormone levels. A study led by Dr. Lucy King at Stanford University examined HCC dynamics in pregnant women and postpartum, finding significant […]
-
eWEAR: A Window into Maternal Health Through Hair Cortisol
-
New Insights into the Neuroscience Behind Conscious Awareness of Choice
When you absentmindedly reach out to pick up your cup of coffee and take a sip, what happens in your brain? Many studies have shown that brain activity begins to ramp up even before you are aware of your choice to move. But this poses a conundrum: Do we have free will to make our […]
-
Finding brain patterns underlying depression: linking functional neuroimaging tosymptom subtypes
Summary Researchers at Stanford University, led by Dr. Leanne Williams, are developing a framework that links brain circuit activity, observed via fMRI scans, to specific depression and anxiety symptoms. Traditional psychiatric labels fail to reflect the biological underpinnings of mental health conditions, but the study focuses on neural circuit dysfunctions, such as the default mode […]
-
eWEAR: Finding brain patterns underlying depression: linking functional neuroimaging to symptom subtypes
-
Soft-Bioelectronics to Detect Neuromotor Disorders in Infants
Summary Researchers are exploring the use of soft, flexible, wireless bioelectronics to detect neuromotor disorders in infants, addressing the challenges of current bulky and wired systems. Traditional assessments, like Prechtel’s tool, predict cerebral palsy in infants by analyzing general movements (GMs), but these methods rely heavily on video monitoring and expert evaluation. A new approach, […]